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Abstract. The concept of fractional significant digits is explored and a definition is proposed,
which puts the concept on a firm analytical footing. A simple, reliable procedure is derived for
calculating the number of fractional significant digits with high accuracy. Examples are presented,
which indicate that fractional significant digits have an important role to play in the comparison of
iterative methods, such as eigensolvers and root-finders.
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1. Introduction. The concept of significant digits is well known, yet there is dis-
agreement among authors regarding how significant digits should be defined. Ralston
and Rabinowitz [1] suggested a definition based on the inequality |z−z̃| ≤ 0.5×10−t, in
which z̃ approximates the exact value z to t significant digits if t is the largest nonneg-
ative integer for which the inequality holds. Vehmanen [2] reviewed several definitions
and suggested that t should be defined based on either |z− z̃|/max(|z| , |z̃|) ≤ 10−t or
|z− z̃|/max (|z| , |z̃| , 0.1) ≤ 10−t. Higham [3] introduced the following two definitions:
z̃ approximates z to t significant digits if (1) “z and z̃ round to the same number
to t significant digits” or (2) “|z − z̃| is less than half a unit in the tth significant
digit of z.” Higham then went on to demonstrate the shortcomings of both of these
definitions. Lakshmikantham and Sen [4] suggested that t should be based on the
inequality |z− z̃|/|z| < 5×10−t. Currently, it seems that the most common definition
is based on the inequality |z − z̃|/|z| ≤ 5× 10−t; see, for example, Burden and Faires
[5]. Clearly, a firm definition of significant digits has not yet been established. The
situation is well summarized by Cheney and Kincaid [6], who described the concept
of significant digits as “elusive.”

Much the same can be said about the concept of fractional significant digits
(FSDs). Nikolajsen [7] implicitly defined the number of binary FSDs as s = − log2 er,
where er = |z − z̃|/|z| is the relative error. Lakshmikantham and Sen [4] defined
decimal FSDs analogously as s = − log10 er. A web based search brought up several
sets of university lecture notes using Lakshmikantham and Sen’s definition. However,
it is easy to show that this does not always produce realistic results. Consider, for
example, z = 1.000 000 and z̃ = 1.000 001, which, according to Lakshmikantham and
Sen, result in s = − log10(|z − z̃|/|z|) = 6.0 significant digits. However, a visual
comparison of z and z̃ shows that they have almost 7 digits in common. In fact, their
7th digits differ by only 1 in 10 or 0.1, based on which it may be argued that z̃ is 0.1
digit short of having 7 digits in common with z. That would make s = 7 − 0.1 = 6.9
rather than s = 6.0 as suggested by Lakshmikantham and Sen. This simple argument
is used in the following sections as the starting point for the development of a new
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definition of FSDs that more accurately reflects the commonality of digits between z
and z̃.

In summary, two methods of calculating the number of FSDs are proposed:
Method 1 provides the exact number of FSDs, s1 = s1(z, z̃), as a function of the
exact value z and the approximate value z̃. s1 turns out not to be fully continuous.
Method 2 is therefore derived, providing an approximate but fully continuous func-
tion s2 = s2(z, z̃), which is better suited to comparing the relative merits of different
iterative procedures, such as eigensolvers and root-finders, as illustrated later.

2. Motivation. This paper was prompted by the apparent lack of a reliable pro-
cedure for comparing the accuracy of iterative eigensolvers. The problems encountered
are illustrated in the following sections.

2.1. Comparison of eigenvalues. Consider Examples 2.1(a) and 2.1(b) which
show the known eigenvalues z1 = 1.000·100 and z2 = 9.999·100 and the corresponding
best approximations z̃1 = 1.001 · 100 and z̃2 = 9.998 · 100 returned by a particular
eigensolver. ea1 and ea2 are the corresponding absolute errors and er2 and er2 are
the relative errors. For simplicity, floating-point numbers with a significand length
of only 4 decimal digits are used. (s1)1 and (s1)2 are the number of FSDs of z̃1 and
z̃2, respectively. The inner s subscript “1” indicates that these FSDs are associated
with Method 1 rather than Method 2, both of which will be derived later. (s1)1 is
calculated as in section 1: z1 and z̃1 have 3 leading digits in common and their fourth
digits differ by 1 in 10 or 0.1, so z̃1 is 0.1 short of having 4 digits in common with z1.
Therefore, z̃1 has (s1)1 = 4− 0.1 = 3.9 FSDs. (s1)2 is also equal to 3.9 for the same
reason.

Example 2.1
Eigenvalue approximations.

(a) Eigenvalue #1 (b) Eigenvalue #2

z1 = 1.000 · 100
z̃1 = 1.001 · 100
ea1 = |z2 − z̃1| = 0.001 · 100
er1 = ea1/ |z1| = 1.000 · 10−3

(s1)1 = 4− 0.1 = 3.9

z2 = 9.999 · 100
z̃2 = 9.998 · 100
ea2 = |z2 − z̃2| = 0.001 · 100
er2 = ea2/ |z2| = 1.000 · 10−4

(s1)2 = 4− 0.1 = 3.9

Inspection shows that z1 and z̃1 are as close as they can be without coinciding, and
so are z2 and z̃2. That suggests that the eigensolver has done equally well in extracting
both eigenvalues. It is confirmed by the absolute errors being equal at ea1 = ea2 =
1.000 ·10−3 and also by the number of FSDs being equal at (s1)1 = (s1)2 = 3.9. But it
is contradicted by the relative errors, er1 = 1.000 · 10−3 and er2 = 1.000 · 10−4, which
differ by a factor 10, suggesting that the eigensolver has extracted Eigenvalue #2 10
times more accurately than Eigenvalue #1; this is a suggestion that is difficult to
reconcile with the fact that the approximate values z̃1 and z̃2 are both adjacent to the
“exact” values z1 and z2, respectively. er1 and er2 are clearly important indicators
of the relative accuracy of the eigenvalues, but they do not reflect the fact that the
eigensolver has managed to place both the approximate values right next to the exact
values. The ea values and the s values do reflect that, so at least one of them appears
to have a role to play in quantifying the capabilities of the eigensolver.
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Example 2.2
Comparison of eigensolvers.

(a) Eigensolver #1 (b) Eigensolver #2

z = 1.000 · 100
z̃1 = 1.001 · 100
ea1 = |z − z̃1| = 0.001 · 100
er1 = ea1/ |z| = 1.000 · 10−3

(s1)1 = 4− 0.1 = 3.9

z = 1.000 · 100
z̃2 = 9.999 · 10−1

ea2 = |z − z̃2| = 0.001 · 10−1

er2 = ea2/ |z| = 1.000 · 10−4

(s1)2 = 4− 0.1 = 3.9

(c) Eigensolver #3 (d) Eigensolver #4

z = 1.000 · 100
z̃3 = 9.990 · 10−1

ea3 = |z − z̃3| = 0.010 · 10−1

er3 = ea3/ |z| = 1.000 · 10−3

(s1)3 = 3− 0.1 = 2.9

z = 1.000 · 100
z̃4 = 9.995 · 10−1

ea4 = |z − z̃4| = 0.005 · 10−1

er4 = ea4/ |z| = 5.000 · 10−4

(s1)4 = 4− 0.5 = 3.5

2.2. Comparison of eigensolvers. Disagreements between ea, er, and s also
occur in comparisons of different eigensolvers: Examples 2.2(a) and 2.2(b) show the
known eigenvalue z = 1.000 · 100 being approximated by two different eigensolvers.
Eigensolvers #1 and #2 have returned best approximations of z̃1 = 1.001 · 100 and
z̃2 = 9.999·10−1, respectively. The ea and er values and (s1)1 are calculated as before.
(s1)2 = 4 − 0.1 = 3.9 follows from the fact that only 1 unit in 10 needs to be added
to the 4th digit of z̃2 to make it equal to z. (A more rigorous method of calculating s
in a case like this, where z and z̃ have no actual digits in common, will be presented
in section 3.4.)

As in Example 2.1, an inspection shows that z̃1 and z̃2 are both as close to z
as they can be without coinciding with z, which suggests that Eigensolvers #1 and
#2 have done equally well in extracting z. That is also reflected by the number of
FSDs being equal at (s1)1 = (s1)2 = 3.9. But it is contradicted by both the absolute
errors (ea1 = 1 · 10−3 and ea2 = 1 · 10−4) and the relative errors (er2 = 1 · 10−3 and
er2 = 1 · 10−4), which suggest that Eigensolver #2 has done 10 times better than
Eigensolver #1. As in Example 2.1, this is difficult to reconcile with the fact that
the approximate values z̃1 and z̃2, are both adjacent to the “exact” value z. But
in contrast to Example 2.1, ea now agrees with er, leaving s as the only parameter
indicating that the two eigensolvers did equally well.

The disagreement also shows up when Eigensolvers #1 and #3 are being com-
pared; see Examples 2.2(a) and 2.2(c). Eigenvalue z = 1.000 · 100 is again being
approximated, but now the absolute errors (ea1 = ea3 = 1 · 10−3) and the rela-
tive errors (er1 = er3 = 1 · 10−3) suggest that Eigensolvers #1 and #3 have done
equally well, whereas the number of FSDs ((s1)1 = 3.9 and (s1)3 = 2.9) suggest that
Eigensolver #1 has done significantly better.

These disagreements are due to the limitations of floating-point numbers: With
the four-digit floating-point representation used here, the distance between adjacent
significand values is ΔS = 0.001. So in decade 0.1-to-1, where the exponent is E = −1,
the distance between adjacent floating-point numbers is δ[0.1:1] = ΔS · 10E = 1.000 ·
10−4, whereas in decade 1-to-10, where the exponent is E = 0, the distance between
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adjacent floating-point numbers is δ[1:10] = ΔS ·10E = 1.000·10−3. In Example 2.2(a),
z̃1 resides in decade 1-to-10, so the distance ea1 = 1.000 · 10−3 between z and z̃1 is
equal to the distance δ[1:10] = 1.000 · 10−3 between adjacent floating-point numbers.
In other words, Eigensolver #1 has left a gap of only one floating-point increment
between z and z̃1. That is reflected by the large s value of (s1)1 = 3.9.

Similarly, in Example 2.2(b), z̃2 resides in decade 0.1-to-1, so the distance ea2 =
1.000 · 10−4 between z and z̃2 is equal to the distance δ[0.1:1] = 1.000 · 10−4 between
adjacent floating-point numbers. So Eigensolver #2 has also left a gap of only one
floating-point increment between z and z̃2, as reflected by the large s value of (s1)2 =
3.9. In other words, both Eigensolvers #1 and #2 have found z with an accuracy
that matches the resolution of the floating-point numbers of the decades in which z̃1
and z̃2 reside. That suggests that Eigensolvers #1 and #2 have done equally well.
But the actual distance between z and z̃1 is 10 times the distance between z and z̃2
(as reflected by ea and er) which suggests that Eigensolver #2 did 10 times better
than Eigensolver #1.

In Example 2.2(c), z̃3 resides in decade 0.1-to-1, so the distance ea3 = 1.000 ·10−3

between z and z̃3 is 10 times the distance δ[0.1:1] = 1.000 · 10−4 between adjacent
floating-point numbers. Thus, Eigensolver #3 has only managed to place z̃3 within
a distance of 10 floating-point increments from z. As already discussed, Eigensolver
#1 has managed to place z̃1 one floating-point increment from z, so in that respect,
Eigensolver #1 has done 10 times better than Eigensolver #3. But the actual distance
between z and z̃1 is equal to the distance between z and z̃3 (as reflected by ea and
er) which suggests that Eigensolvers #1 and #3 did equally well.

One reservation regarding the latter suggestion is that the high resolution of
z̃3’s decade (0.1-to-1), compared with the low resolution of z̃1’s decade (1-to-10),
gives Eigensolver #3 an unfair advantage over Eigensolver #1 in demonstrating its
capabilities. If the resolution of decade 1-to-10 permitted, Eigensolver #1 might be
able to further reduce the gap between z̃1 and z, thus making z̃1 more accurate than
z̃3, as measured in terms of the absolute and relative errors.

A comparison of Examples 2.2(a) and 2.2(d) further complicates the picture:
Here, the s values, (s1)1 and (s1)4, indicate that Eigensolver #1 did better, whereas
the ea and er values indicate that Eigensolver #4 did better.

A resolution of this problem is beyond the scope of this paper. Rather, one of the
purposes of the paper is to facilitate further investigation by providing a formulation
of s that has the same high accuracy as the standard formulations of ea and er.

2.3. Iterative root-finders. The high-accuracy FSD formulation, derived in
this paper, can also be used to improve the stopping criteria for iterative root-finders
such as, for example, ZANLY in the IMSL Math Library [8]. Such root-finders often
declare a root based on the relative error er between successive iterates being less
than a given error bound. But as shown in the previous sections, an approach based
solely on er is suspect. If the stopping criteria were instead formulated in terms of
maximizing s, then the iterations would continue until the number of floating-point
increments between successive iterates were minimized. Thus, the best possible ap-
proximation would be returned, regardless of the decade in which it resides. Stopping
criteria of this type already exist, see Nikolajsen [7], but a high-accuracy formulation
of s is needed to improve their implementation.

Note that when the exact roots are unknown, as in the previous paragraph,
s is no longer the number of FSDs but rather the number of matching leading
digits of successive iterates. But, for the sake of simplicity, in this paper, s will
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be referred to as the number of FSDs, which implies that the exact solution is
available.

Finally, a precise formulation of the number of FSDs, as provided herein, will serve
to put the concept of significant digits on a firm analytical footing, thus, eliminating
the “elusiveness” referred to by Cheney and Kincaid [6].

3. Method 1. A review of section 2 will confirm that the number of FSDs was
found using the formula

(3.1) s = si + 1− sf ,

where si is the number of leading digits that z and z̃ have in common and sf is a
fraction that depends on ea. Equation (3.1) is adopted as a preliminary definition of
the number of FSDs. Equation (3.1) is used in this section as the starting point for
the development of a formal procedure, called Method 1, for calculating the number
of FSDs. For simplicity, a floating-point significand of only 4 decimal digits is used
here, but Method 1 (and Method 2 in section 6) work for any significand length.

Example 3.1 shows the basic steps taken to arrive at Method 1. In Example 3.1(a),
the number of FSDs is calculated using exactly the same approach as in section 2:
(s̃i)1 = 3 is the integer number of leading digits that z and z̃ have in common, and
(s̃f )1 = 0.9 is ea’s significand with the decimal point moved to the position where
the string of matching leading digits of z and z̃ ends and the string of nonmatching
trailing digits begins. Substitution into (3.1) then gives s̃1 = 3.1 as shown.

Example 3.1(b) is identical to Example 3.1(a) except that z and z̃’s significands
have both been decremented by the smallest amount possible, 0.001. The same s̃1
value as in Example 3.1(a) is therefore expected but, instead, s̃1 drops to 2.91 as
shown. However, the expected result of s1 = 3.1 can be had by allowing s1 to be
calculated by comparing not only z and z̃ but also z and z̄ = z + ea, and z̃ and
ẑ = z̃ − ea. This results in three s values, s̃1, s̄1, and ŝ1, as shown. The rationale
for allowing the comparison between z and z̄ is that z̄ and z̃ are located on opposite
sides of z and are equidistant from z, so z and z̄ might have the same number of
digits in common as z and z̃. Similarly, ẑ and z are located on either side of z̃ and are
equidistant from z̃, so z̃ and ẑ might also have the same number of digits in common
as z and z̃. In Example 3.1(b), ẑ turns out to have the expected number of FSDs
relative to z̃, i.e., ŝ1 = 3.1. Taking s1 as the maximum of s̃1, s̄1, and ŝ1, as shown,
then gives the expected s1 value of 3.1.

In Example 3.1(c), z and z̃’s significands have again both been decremented by
the smallest amount possible, 0.001, so an s1 value of 3.1 is again expected. Instead,
an s1 value of 2.91 is calculated, using the procedure from Example 3.1(b). One
way of obtaining the expected result of s1 = 3.1 is to extend the procedure from
Example 3.1(b) to allow z and z̃ to be replaced by any two numbers that are separated
by the distance ea = |z − z̃|. This leads to the following definition of the number of
FSDs.

Definition 3.1. The number of FSDs of z̃ relative to z is the maximum number
of leading digits that any two numbers z̃1 and z1 can have in common if they are
separated by the distance ea = |z − z̃|.

As it stands, Definition 3.1 requires that z and z̃ have the same exponent and
that z1 and z̃1 be restricted to numbers that have the same exponent as z and z̃. This
restriction is relaxed later in section 3.4.

An obvious choice for the value of z̃1’s significand is 1.000, which positions z̃1 at
the start of its decade, thus maximizing the number of digits that the significands of
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Example 3.1
Derivation of Method 1.

(a)

z = 1.089 · 101
z̃ = 1.080 · 101
ea = |z − z̃| = 0.009 · 101
s̃1 = (s̃i)1 + 1− (s̃f )1

= 3 + 1− 0.9 = 3.1

(b)

z = 1.088 · 101
z̃ = 1.079 · 101
ea = z − z̃ = 0.009 · 101
z̄ = z + ea = 1.097 · 101
ẑ = z̃ − ea = 1.070 · 101⎧⎪⎨

⎪⎩

s̃1 = 2 + 1− 0.09 = 2.91

s̄1 = 2 + 1− 0.09 = 2.91

ŝ1 = 3 + 1− 0.90 = 3.1

s1 = max(s̃1, s̄1, ŝ1) = 3.1

(c)

z = 1.087 · 101
z̃ = 1.078 · 101
ea = z − z̃ = 0.009 · 101
z̄ = z + ea = 1.096 · 101
ẑ = z̃ − ea = 1.069 · 101⎧⎪⎨

⎪⎩

s̃1 = 2 + 1− 0.09 = 2.91

s̄1 = 2 + 1− 0.09 = 2.91

ŝ1 = 2 + 1− 0.09 = 2.91

s1 = max(s̃1, ŝ1, s̄1) = 2.91

z1 = z̃1 + ea = 1.009 · 101
z̃1 = 1.000 · 101
ea = 0.009 · 101

s1 = 3 + 1− 0.9 = 3.1

z̃1 and z1 = z̃1 + ea have in common. Thus, in Example 3.1(c), the expected number
of FSDs can be found by setting z̃1 = 1.000 · 101 and z1 = z̃1 + ea = 1.009 · 101 as
shown, resulting in s1 = 3.1.

Several other methods of calculating s were investigated but none were found that
matched the accuracy and simplicity of Method 1.

3.1. Binary FSDs. For simplicity, Method 1 was introduced in the previous
section using decimal numbers. However, most computers use binary numbers, with
decimal numbers being convenient approximations. As a result, decimal FSDs are
unreliable in computer applications and must be replaced by binary FSDs, as demon-
strated in this section.

Consider Example 3.2 which shows in sequence the smallest numbers that can be
accommodated by a 14-bit significand. (A trailing “b” designates a binary number.)
Also shown are the corresponding 5- and 4-digit decimal significand values. Notice
that 1.0003, 1.0008, and 1.0014 are missing from the 5-digit decimal significand values.
Therefore, a 14-bit significand is unable to fully represent a 5-digit decimal significand.
On the other hand, the 4-digit decimal significand is overrepresented with several
14-bit numbers representing the same 4-digit decimal number. For example, the
entire range of 14-bit binary numbers from entry #6 to entry #13 represent the
decimal number 1.001. In other words, the mapping between the 14-bit significand
values and 4-decimal-digit significand values is not injective. As a result, the mapping
between binary FSDs and decimal FSDs is not injective either.

This is illustrated in Example 3.3. Examples 3.3(a) and (b) take their z and
z̃ values from entries #14 and #13 in Example 3.2. Examples 3.3(c) and (d) use
entries #13 and #6. Both the binary number of FSDs, (s1)b, and the decimal number
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Example 3.2
Binary numbers and their decimal approximations.

# 14-bit significand 5-dig dec 4-dig dec

1

2

3

4

5

6

7

8

9

10

11

12

13

14

- -

1.0000 0000 00000b

1.0000 0000 00001b

1.0000 0000 00010b

1.0000 0000 00011b

1.0000 0000 00100b

1.0000 0000 00101b

1.0000 0000 00110b

1.0000 0000 00111b

1.0000 0000 01000b

1.0000 0000 01001b

1.0000 0000 01010b

1.0000 0000 01011b

1.0000 0000 01100b

1.0000 0000 01101b

- - -

1.0000

1.0001

1.0002

1.0004

1.0005

1.0006

1.0007

1.0009

1.0010

1.0011

1.0012

1.0013

1.0015

1.0016

- - -

1.000

1.000

1.000

1.000

1.000

1.001

1.001

1.001

1.001

1.001

1.001

1.001

1.001

1.002

- - -

of FSDs, (s1)d, are calculated in accordance with Method 1. This includes replacing
z and z̃ with z1 and z̃1, as outlined in the discussion of Example 3.1(c).

The relationship between decimal and binary FSD is governed by 10sd = 2sb

or sd = sb log10 2. So, in Example 3.3(a), (s1)b = 13.5 translates into (s1)d =
(s1)b log10 2 = 4.1, which is not the result found in Example 3.3(b). In fact, (s1)d = 4.1
is an impossibly large number considering that Example 3.3(b) uses a 4-digit signifi-
cand. In Examples 3.3(c) and (d), the agreement is just as poor with (s1)b = 11.125
in Example 3.3(c) translating into (s1)d = (s1)b log10 2 = 3.3, whereas, according to
Example 3.3(d), (s1)d = 4. Not even the trend is consistent, with (s1)d being smaller
in Example 3.3(b) than in Example 3.3(d) while (s1)b is larger in Example 3.3(a)
than in Example 3.3(c). Since the binary numbers are the “exact” numbers and the
decimal numbers are approximations, decimal FSDs must be discarded in favor of
binary FSDs in computer applications.

3.2. Amendment of (3.1). There is a fundamental problem with s1 = 13.5
in Example 3.3(a): Inspection clearly shows that z1 and z̃1 have exactly 13 bits in
common. In accordance with Method 1, z and z̃ therefore also have exactly 13 bits in
common, so s1 should be equal to 13.0. This result can be had by replacing (3.1) by

(3.2) s = si + not(sf ),

where the real function not() returns the complement of its binary fraction argument
(here sf ) except that any zeros left of the radix point are left unchanged. Thus, in
Example 3.3(a), sb = 13 + 1− .1b = 13.5 should be replaced by sb = 13 + not(.1b) =
13 + .0b = 13.0, which is the correct value according to inspection. Similarly, in
Example 3.3(c), inspection shows that z1 and z̃1 (and therefore z and z̃) have exactly
11 bits in common, which can be gotten by replacing (s1)b = 11+ 1− .111b = 11.125
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Example 3.3
Discrepancy between binary and decimal FSDs.

(a) (b)

z = 1.0000 0000 01101b

z̃ = 1.0000 0000 01100b

ea = 0.0000 0000 00001b

z1 = 1.0000 0000 00001b

z̃1 = 1.0000 0000 00000b

(s1)b = 13 + 1− .1b = 13.5

z = 1.002

z̃ = 1.001

ea = 0.001

z1 = 1.001

z̃1 = 1.000

(s1)d = 3 + 1− 0.1 = 3.9

(c) (d)

z = 1.0000 0000 01100b

z̃ = 1.0000 0000 00101b

ea = 0.0000 0000 00111b

z1 = 1.0000 0000 00111b

z̃1 = 1.0000 0000 00000b

(s1)b = 11 + 1− .111b = 11.125

z = 1.001

z̃ = 1.001

ea = 0.000

z1 = 1.000

z̃1 = 1.000

(s1)d = 4

by (s1)b = 11 + not(.111b) = 11.000. Experimentation shows that the difference
between not(sf ) in (3.2) and 1 − sf in (3.1) is relatively small, decreasing from 0.5
when si = 13 to near zero when si = 1.

To further explore the accuracy of (3.2), consider again a significand with a bit
length of 14. If (s1)f = .11b, all but the two rightmost bit pairs of z1 and z̃1 match,
so s1 should be equal to 12. That is confirmed by (3.2), which gives s1 as the sum of
(s1)i = 12 and not [(s1)f ] = .00b = .0. If (s1)f = .10b, then there is a match between
z1 and z̃1’s least significant bit pair but a mismatch between the adjacent bit pair,
which is twice as significant. Thus, s1 should be twice as close to 12 as to 13. That
is correctly reflected by not [(s1)f ] = .01b = 0.25, leading to s1 = 12.25. This line
of argument can be continued for (s1)f values with a bit length of 3, in which case
(s1)i = 14−3 = 11 and the possible (s1)f values are (s1)f = .111b, .110b, .101b, .100b,
resulting in not [(s1)f ] = .000b, .001b, .010b, .011b. (3.2) then gives the following
results: s1 = 11.000, 11.125, 11.250, 11.375. Examination of these values suggests
that the results provided by (3.2) again reasonably reflect both the number and the
position of the mismatching bit pairs of z1 and z̃1. Similar arguments hold for (s1)f
values with larger bit lengths, confirming that (3.2) provides good accuracy results
across the entire range of s values from 1 to lm, where lm is the bit length of the
significand used.

Note that combinations such as (s1)f = .01b, .011b, .010b, etc., cannot occur
because, according to Method 1, the radix point must always be inserted next to the
leftmost 1-bit of ea. The consequence is that (s1)f can never be less than .1b = 0.5, so
not [(s1)f ] will always be less than 0.5, i.e., not [(s1)f ] will always be in the interval [0,
0.5) and can never enter the interval [0.5, 1]. Thus, a steady growth in the number of
mismatching bit pairs of z1 and z̃1 is not reflected in a steady growth of s1. In other
words, function s1(z, z̃) is not continuous. The discontinuity of s1(z, z̃) is investigated
in the next section.
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Example 3.4
Discontinuity of s1(z, z̃).

(a) (b)

z1 = 1.0000 0000 11110b

z̃1 = 1.0000 0000 00000b

ea = 0.0000 0000 11110b

s1 = 9 + not(.11110b) = 9.0313

z1 = 1.0000 0000 11111b

z̃1 = 1.0000 0000 00000b

ea = 0.0000 0000 11111b

s1 = 9+ not(.11111b) = 9.0000

(c)

z1 = 1.0000 0001 00000b

z̃1 = 1.0000 0000 00000b

ea = 0.0000 0001 00000b

s1 = 8 + not(.1 00000b) = 8.4844

3.3. Continuity. The lack of continuity of s1(z, z̃) is illustrated in Example 3.4,
where z and z̃ have already been shifted to z̃1 = 1.0000 0000 00000b and z1 =
z̃1 + ea. Also in Example 3.4, ea grows by the smallest amount possible, 2−13, from
Example 3.4(a) through 3.4(b) to 3.4(c). The resulting s1 values show a steady reduc-
tion from s1 = 9.0313 in Example 3.4(a) to s1 = 9.0000 in Example 3.4(b), followed by
a large jump to s1 = 8.4844 in Example 3.4(c), confirming the discontinuity of s1(z, z̃).

The numerical results reported later show that such intermittent discontinuities
occur throughout the range of s1. They do not prevent s1 from being used to deter-
mine which of several iterative procedures yield the largest number of FSDs, but they
do make it difficult to judge accurately the relative merits of iterative procedures when
their s1 values straddle a discontinuity. This difficulty is addressed later by Method
2, which provides an approximate but continuous FSD function s2(z, z̃).

3.4. z and z̃ in adjacent octaves. In the examples shown so far, z and z̃ reside
in the same octave, i.e., they have the same exponent. If they reside in different
octaves, and the octaves are not adjacent, then z and z̃ are so widely spaced that
they have no leading bits in common, resulting in s1 = 0. If they reside in adjacent
octaves, i.e., if the difference between their exponents is one, then s1 may well be
nonzero and large. In order to find s1 in such cases, an adjustment is needed to ea as
part of the shift from z and z̃ to z1 and z̃1.

Consider for example the situation shown in Figure 3.1. z̃ = 3.0 resides in octave
2-to-4 and z = 5.6 resides in octave 4-to-8. The 14-bit significand used here sets
the limit for the number of discrete values that can be accommodated within each
octave. In other words, the same number of significand values exists within each
octave, regardless of its length. Since octave 4-to-8 is twice as long as octave 2-to-4,
the distance between adjacent significand values in octave 4-to-8 is twice as long as in
octave 2-to-4. This is indicated symbolically by the distance between the tick marks
on the axis in Figure 3.1. Thus, if z̃ and z are shifted up, in accordance with Method
1, to both reside in octave 4-to-8, then the length of ẽa (that part of ea that resides
in octave 2-to-4) must be doubled in order for it to represent the same number of
significand values as it did in octave 2-to-4. ea = |z − z̃| must therefore be replaced
by ea = 2ẽa + ēa in order to calculate s1 correctly.

The use of ea = 2ẽa + ēa is demonstrated in Example 3.5 for the case shown in
Figure 3.1. The example should be self-explanatory. A downshift to octave 2-to-4
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Fig. 3.1. z and z̃ in different octaves.

Example 3.5
Upshift to z’s octave.

z = 5.6 = 1.0110 0110 01101b · 22
z̃ = 3.0 = 1.1000 0000 00000b · 21
Upshift to z̃1 = 1.0000 0000 00000b · 22
ẽa = z̃1 − z̃ = 0.0100 0000 00000b · 22
ēa = z − z̃1 = 0.0110 0110 01101b · 22
ea = 2ẽa + ēa = 0.1110 0110 01101b · 22
z1 = z̃1 + ea = 1.1110 0110 01101b · 22
s1 = 1 + not(.1110 0110 01101b) = 1.0999

works just as well, requiring ea = ẽa + ēa/2. It is easy to demonstrate that the result
is the same.

4. Implementation of Method 1. s1 can be calculated numerically using (3.2)
with the following substitutions for (s1)i and not [(s1)f ]:

(s1)i = exponent(z̃1)− exponent(ea),(4.1)

not [(s1)f ] = 1− 2(s1)i−lm − fraction(ea).(4.2)

As before, z̃1 is the approximation z̃ shifted (as in section 3.4) to the same octave
as the “exact” value z. ea is the absolute error and lm is the length of the significand,
i.e., lm = 14 in the current examples. The intrinsic function exponent() returns the
binary exponent of its argument plus one (when the argument is written as in the
current examples). The intrinsic function fraction() returns the significand of its
argument with the radix point inserted left of the leftmost 1-bit.

Equations (4.1) and (4.2) will be explained loosely with reference to Example 4.1.
Example 4.1 first shows the upshift from z and z̃ to z1 and z̃1 and the associated
calculation of ea, as discussed in section 3.4. Next, s1 is found by inspection, as in
the previous examples. Finally, s1 is found by application of (4.1) and (4.2).

The inspection shows that the correct value of (s1)i is 9 because that is the
number of matching leading bit pairs of z1 and z̃1. (s1)i is therefore also equal to
the number of leading zeros of the denormalized significand of ea, i.e., the leftmost
ea significand shown in Example 4.1. If z̃1’s exponent were equal to zero, then ea
would be equal to its denormalized significand, i.e., ea = 0.0000 0000 11000b =
1.1000b · 2−9. The correct value of (s1)i could then be found as the negative of
exponent(ea) − 1 = −9. But in Example 4.1, z̃1’s nonzero exponent is effectively
added to ea’s exponent, resulting in an ea exponent of −9 − 8 = −17, as shown. In
order to recover the desired exponent of −9, z̃1’s exponent (exponent(z̃1) − 1 = −8)
must to be subtracted from the normalized ea exponent (exponent(ea) − 1 = −17).
The result is exponent(ea) − 1 − [exponent(z̃1) − 1] = −17 − (−8) = −9, as desired,
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Example 4.1
Implementation of Method 1.

z = 1.0000 0000 00101b · 2−8

z̃ = 1.1111 1111 01101b · 2−9

z̃1 ≡ 1.0000 0000 00000b · 2−8

(ea)1 = z̃1 − z̃ = 0.0000 0000 10011b · 2−9

(ea)2 = z − z̃1 = 0.0000 0000 00101b · 2−8

ea = 2(ea)1 + (ea)2 = 0.0000 0000 11000b · 2−8 = 1.1000 · 2−17

z1 = z̃1 + ea = 1.0000 0000 11000b · 2−8

Inspection:

s1 = (s1)i + (s1)f = 9 + not(.11000b) = 9.2188

Method 1:

(s1)i = exponent(z̃1)− exponent(ea) = −7 + 16 = 9

(s1)f = fraction(ea) = .11000b

b1 = 1− 2−lf = 1− 2(s1)i−lm = 1− 29−14 = .11111b

not [(s1)f ] = b1 − (s1)f = .11111b− .11000b = .00111b = 0.2188

s1 = (s1)i + not [(s1)f ] = 9 + 0.2188 = 9.2188

the negative of which is (s1)i = exponent(z̃1) − exponent(ea) = 9, from which (4.1)
follows.

Equation (4.2) can also be verified by reference to Example 4.1. The basic defi-
nition of (s1)f in section 3 makes (s1)f equal to fraction(ea). not [(s1)f ] (the binary
complement of (s1)f ) can then be found by subtracting (s1)f = fraction(ea) from a
string of 1-bits, which has the same length as (s1)f and is preceded by a radix point.
Inspection of Example 4.1 shows that the length of (s1)f is lf = lm−(s1)i = 14−9 = 5
bits. The bit string from which (s1)f should be subtracted must therefore consist of
five 1-bits preceded by a radix point, i.e., b1 = .11111b. That can be generated numer-
ically as b1 = 1−2−lf = .11111b. Equation (4.2) then follows from substituting b1 and
(s1)f into not [(s1)f ] = b1 − (s1)f . In Example 4.1, not [(s1)f ] = b1 − (s1)f = 0.2188.
Substitution into (3.2) then gives s1 = 9.2188, as shown. This agrees with the value
found by inspection.

If z or z̃ is zero then the definition of FSDs changes from the number of matching
leading bits of z1 and z̃1 to the number of leading zeros of ea = |z − z̃|. This can be
found by reducing (4.1) and (4.2) to

(s1)i = 1− exponent(ea),(4.3)

not [(s1)f ] = 1− 21−lm − fraction(ea).(4.4)

Equations (4.3) and (4.4) are verified in Example 4.2, which should be self-
explanatory.

Application of (4.3) and (4.4) can lead to s1 values beyond the normal range of 0
to lm. Thus, s1 must be zeroed if it becomes less than zero and s1 must be set equal
to lm if it exceeds lm.

The implementation of Method 1, as proposed in this section, works regardless
of whether z and z̃ are positive or negative and regardless of whether z̃ is larger than
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Example 4.2
Method 1 with z = 0.

z = 0.0000 0000 00000b

z̃ = −1.0101 0101 01010b · 2−8

ea = 1.0101 0101 01010b · 2−8

= 0.0000 0001 0101 0101 01010b
Inspection:

s = 8 + not(.10101 0101 01010b) = 8.3333

Method 1:

(s1)i = 1 + 7 = 8

not [(s1)f ] = 1− 21−14 − .10101 0101 01010b = 0.3333

s1 = (s1)i + not [(s1)f ] = 8.3333

or smaller than z. However, (4.1) and (4.2) do not work when z and z̃ have opposite
signs, but in that case s1 will be equal to zero. The reason is that z and z̃ will be
entirely uncorrelated when their signs differ because they cannot be in the same octave
and they cannot be in adjacent octaves. Even if their exponents are as small as their
floating-point representation allows, there will still be an infinity of octaves separating
them. On the other hand, ea will be virtually equal to zero, suggesting that z̃ is an
extremely close approximation. But er will be of the order of one, suggesting that z̃
is a very poor approximation. This is one more example of the disagreement between
ea, er, and s, as discussed in sections 2.1 and 2.2.

Equations (4.1) and (4.2) also do not work and are not needed when z = z̃, in
which case s1 = lm. Finally, as discussed earlier, s1 must be set equal to zero when
exponent(z1) �= exponent(z̃1), i.e., when z1 and z̃1 are not in the same octave.

5. Method 1 results. Figure 5.1 shows a surface plot of s1 as a function of z
and z̃. z and z̃ are IEEE single-precision numbers with a significand length of lm = 24
bits. z and z̃ both cover the range from 0.875 to 2.5. Thus, Figure 5.1 shows the
behavior of s1(z, z̃) throughout octave 1-to-2 and also in the adjacent quarter octaves.
In this section, the designation “octave 1-to-2” refers to the entire square in the zz̃-
plane in which 1 ≤ z ≤ 2 and 1 ≤ z̃ ≤ 2. The smallest possible distance between IEEE
single-precision significand values is 2−23. Compared to that, the distance between
adjacent points in Figure 5.1 is a crude 2−5, necessitated by the need to cover an entire
octave and its vicinity and, at the same time, produce a plot in which the lines are
far enough apart so that they do not merge into black, unreadable areas. Spot checks
at full resolution (i.e., with 2−23-size increments) have confirmed that no important
feature of s1(z, z̃) has been missed in Figure 5.1.

The top ridge at s1 = 24 coincides with the vertical plane z̃ = z as expected.
As z and z̃ diverge, s1 decreases sharply before leveling out for small values of s1. A
discontinuity, roughly parallel to the z̃ = z plane, occurs each time s1 passes through
an integer value. The discontinuities manifest themselves as steps with a height of
about one half unit, as discussed in section 3.2. They are only visible in Figure 5.1
at small values of s1 because of the low resolution of the plot. The final double-
sized step down from s1 = 1 to s1 = 0 is due to the numerical implementation,
which sets s1 equal to zero whenever s1 is smaller than one. This simplifies the
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Fig. 5.1. s1(z, z̃).

implementation significantly and is justified by arguing that two numbers with no
leading bits in common can be regarded as uncorrelated for most practical purposes.
The discontinuities are discussed further in section 3.3.

Octave 1-to-2 is weakly discernible in the middle of the plot, covering the area
outlined by steps that are truly parallel to the vertical plane z̃ = z. The bends at
the ends of these steps outline the boundaries of octave 1-to-2. The quarter octaves
0.5-to-1 and 2-to-4 cover the areas at the borders of the plot that are also outlined
by steps parallel to the z̃ = z plane. Wedged in between are two areas with steps
that are not truly parallel to the z̃ = z plane. In these areas, z and z̃ have different
exponents. Notice that the quarter octave 0.5-to-1 covers a much smaller area than
the quarter octave 2-to-4. This is because the constant increment of 2−5 between
adjacent points translates into a shorter distance the lower the octave, as discussed
in section 3.4. That is also the reason why the plot is steeper the lower the octave.

Only the surface where z is greater than or equal to z̃ is visible in Figure 5.1.
The hidden surface is a mirror image of the visible surface, i.e., s1(z, z̃) is symmetrical
about the z̃ = z plane, as expected.

If definition 3.1 in section 3 is accepted, then s1(z, z̃) is the exact number of
FSDs of z̃ relative to z. The obvious shortcoming of s1 is its lack of continuity, which
makes it unsuitable for determining the relative number of FSDs of different iterative
methods, as discussed in section 3.3. This problem would disappear if s(z, z̃) could
be made continuous, and that is the subject of the next section.

6. Method 2. Efforts to achieve continuity of s(z, z̃) led to Method 2, which is
an approximation of the exact Method 1, in which the terms of (3.2) are calculated
as
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(s2)i = exponent(z̃1)− exponent(ea),(6.1)

not [(s2)f ] = − log2(fraction(ea) + 2(s2)i−lm).(6.2)

The terminology of (6.1) and (6.2) is the same as for (4.1) and (4.2).

Equations (6.1) and (6.2) can be explained loosely as follows, with reference to
Example 3.4(b): The integer part of − log2(ea) = − log2(0.0000 0000 11111b) =
8.0458 is a rough measure of the number of leading zeros of ea, i.e., it is a rough
measure of (s2)i. The correct number of leading zeros of ea, i.e., (s2)i = 9, can be had
by correcting for the effect of z̃1’s exponent, i.e., (s2)i can be found as the integer part
of exponent(z̃1)− log2(ea) = 1+8.0458 = 9.0458. The fractional part, (s2)f = 0.0458,
is a measure of how much the actual number of FSDs exceeds 9 so, taken as a whole,
s2 can be found as

(6.3) s2 = (s2)i + (s2)f = exponent(z̃1)− log2(ea).

In Example 3.4(b), this gives s2 = 9.0458, but according to Example 3.4(b),
the correct fraction is not [(s2)f ] = 0.0000. Experimentation shows that the correct
fraction can be had by adding 2(s2)i−lm to ea’s significand. Thus, the correction can
be made by writing ea as ea = fraction(ea) · 2exponent(ea) and adding 2(s2)i−lm to
fraction(ea). Equations (6.1) and (6.2) then follow from substituting the resulting
value of ea into (6.3). Equation (6.1) gives the formula for (s2)i separately to permit
substitution of (s2)i into (6.2).

For practical purposes, the correction 2(s2)i−lm is negligible when s2 is small,
but its significance grows with the value of s2, as demonstrated by the following
extreme case: With the current significand length of lm = 14, the smallest nonzero
value of ea’s significand is 0.0000 0000 00001b = 2−13 so, by inspection, s2 = 13 +
not(.1b) = 13. With exponent(z̃1) = 1, (3.2) with substitutions from (6.1) and (6.2)
also gives s2 = 13, as expected. But (6.3), which omits the correction 2(s2)i−lm , gives
s2 = 14, wrongly suggesting that z = z̃ and confirming the importance of including
the correction 2(s2)i−lm .

In Example 3.4, application of (3.2), with substitutions from (6.1) and (6.2),
results in

Example 3.4a: s2 = 1 + 8− log2[.11110b+ 29−14] = 9.0458;

Example 3.4b: s2 = 1 + 8− log2[.11111b+ 29−14] = 9.0000;

Example 3.4c: s2 = 1 + 7− log2[.1 00000b+ 28−14] = 8.9556.

The change in s2 can be seen to be almost constant, illustrating the continuity of
the discrete function s2(z1, z̃1).

If z or z̃ is zero then the definition of FSDs changes from the number of matching
leading bits of z1 and z̃1 to the number of leading zeros of ea. This can be found by
reducing (6.1) to

(6.4) (s2)i = 1− exponent(ea)

while (6.2) remains unchanged. Application of (6.4) and (6.2) can lead to s2 values
beyond the normal range of 0 to lm. Thus, s2 must be zeroed if it becomes less than
zero and s2 must be set equal to lm if it exceeds lm.

The numerical implementation of Method 2 is subject to the same exceptions as
outlined for Method 1 at the end of section 4.
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7. Method 2 results. Figure 7.1 shows a surface plot of s2 as a function of z
and z̃. Figure 7.1 corresponds exactly to Figure 5.1, the only difference being that s2
is plotted instead of s1. Figure 7.1 confirms that s2(z, z̃) is continuous, as expected,
except for the step down from s2 = 1 to s2 = 0, which has the same explanation as
for s1 in section 5.

Figure 7.2 shows a sample comparison of s1 and s2 with z held constant at z = 2
and z̃ traversing the range 1.99994 to 2 in steps of 2−23 (i.e., full resolution). The
corresponding range of s1 and s2 values is 15 to 24 as shown. s2 is the continuous
curve and s1 is the broken line that touches s2 at each integer value of s. Addi-
tional investigations have confirmed that the close proximity of s1 and s2, as seen in
Figure 7.2, extends across the entire range of s values from 1 to 24, and throughout all
combinations of z and z̃ values. s2 is therefore considered to be an adequate approx-
imation of s1 for the purpose of comparing the relative merits of different iterative
procedures.

The advantage of using s2 instead of s1 for such comparisons is illustrated by
the following single-precision example: Assume that two eigensolvers, called a and b,
provide the approximations z̃a = 1.937500 and z̃b = 1.937500 + 2−23 � 1.9375001,
respectively, for an ill-conditioned eigenvalue with the ‘exact’ value z = 2.000000.
Note that z̃b is equal to z̃a to within single-precision accuracy (∼7 decimal digits).
The two eigensolvers have therefore extracted z = 2.000000 to virtually the same
accuracy. That is confirmed by the s2 values being almost equal at (s2)a = 4.999997
and (s2)b = 5.000000. But it is contradicted by the s1 values (s1)a = 4.499990
and (s1)b = 5.000000, which wrongly suggest that eigensolver b has extracted the

Fig. 7.1. s2(z, z̃).
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Fig. 7.2. s1 and s2 versus z̃.

eigenvalue with 10% better accuracy than eigensolver a. The discrepancy caused
by using s1 is greatest for small s values. But that makes it no less serious be-
cause small s values are associated with ill-conditioned roots, whose successful ex-
traction is of particular concern when evaluating the capabilities of eigensolvers and
root-finders.

8. Summary. Examples have been presented which indicate that the number
of fractional significant digits (FSDs) cannot be ignored when comparing the relative
accuracy of iterative procedures, such as eigensolvers and root-finders.

To facilitate such comparisons, a simple definition has been proposed, which puts
the concept of FSDs on a firm analytical footing. It allows the number of FSDs to be
determined by a hand calculation, which is demonstrated to be accurate and reliable.
With the availability of this simple tool, there seems to be little need for the “elusive”
concept of integer significant digits.

Two numerical procedures for calculating the number of FSDs are also presented,
providing both the exact number of FSDs and an approximate number of FSDs, the
latter being continuous and therefore better suited for comparing the relative merits
of different iterative procedures. Both codes are available from the author on request.
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